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ABSTRACT

Numerical methods for solving the flow equations in cylindrical or spherical coordinates

should be able to capture the behavior of the exact solution near the regions where the

particular form of the governing equations is singular. In this work we focus on the

treatment of these numerical singularities for finite-differences methods by reinterpreting the

regularity conditions developed in the context of pseudo-spectral methods. A generally

applicable numerical method for treating the singularities present at the polar axis, when non-

axisymmetric flows are solved in cylindrical coordinates using highly accurate finite-

differences schemes (e.g., Pade schemes) on non-staggered grids, is presented. Governing

equations for the flow at the polar axis are derived using series expansions near r=0. The

only information needed to calculate the coefficients in these equations are the values of the

flow variables and their radial derivatives at the previous iteration (or time) level. These

derivatives, which are multi-valued at the polar axis, are calculated without dropping the

accuracy of the numerical method using a mapping of the flow domain from (0,R)*(0,27z) to

(-R,R)*(0,n), where R is the radius of the computational domain. This allows the radial

derivatives to be evaluated using high-order differencing schemes (e.g., compact schemes) at

points located on the polar axis. The proposed technique is illustrated by results from

simulations of laminar-forced jets and turbulent compressible jets using large eddy simulation

(LES) methods. In term of the general robustness of the numerical method and smoothness

of the solution close to the polar axis, the present results compare very favorably to similar

calculations in which the equations are solved in Cartesian coordinates at the polar axis, or in

which the singularity is removed by employing a staggered mesh in the radial direction

without a mesh point at 1"=-0, following the method proposed recently by Mohseni and

Colonius [1]. Extension of the method described here for incompressible flows or for any



other set of equations that are solved on a non-staggered mesh in cylindrical or spherical

coordinates with finite-differences schemes of various level of accuracy is immediate.
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1. BACKGROUND

The singularities at the centerline of a cylindrical coordinate system are due to the

presence of terms containing the factor l/r, where r is the radial distance, in the equations

governing the flow. The flow field itself does not have any singularity at the polar axis. For

axisymmetric flows symmetry conditions may be used to remove these singularities, but in

the simulation of non-axisymmetric flows this problem must be faced. Furthermore, as the

computational domain is defined as (0,2n)*(0,R) one has to specify numerical boundary

conditions at r=0, even if physically there is no boundary at the polar axis.

Several numerical methods have been proposed to address the singularity of the flow

equations in cylindrical or spherical coordinates. At first sight they seem to vary greatly

depending on whether a pseudo-spectral, finite-volume or finite-differences framework is

adopted, but in fact there are many similarities among them. This is especially true for the

new finite-difference method on non-staggered grids proposed here and the treatment used

with pseudo-spectral methods. There are also common elements with methods that use

l'Hopital's rule [2] or use a 'shifted' distribution of points in the radial direction [1] to

eliminate the points on the polar axis.

The main idea behind using spectral methods in cylindrical coordinates is to seek an

approximation using polynomial expansions in the radial direction that satisfy some regularity

conditions so as to insure a well-behaved solution near the polar axis. O'Sullivan and Breuer

[3] studied the growth of linear and non-linear disturbances in pipe flow. They solved the

Navier-Stokes equations using Fourier transforms in both the streamwise and azimuthal

directions, and Chebyshev polynomials in the radial direction. The singularity at the polar

axis was avoided by using information in wavenumber space related to the form of the series

expansions of the velocity and pressure variables at r=-0, and by mapping in the radial

direction to increase resolution near the polar axis. Patera and Orszag [4] in a related study

used a similar spectral method but they employed parity relations for the Chebyshev

coefficients in the expansions to remove the coordinate singularity of the cylindrical system.



Fully developedpipeflow DNScalculationsin cylindricalcoordinatesusingspectralmethods

werereportedin [5] and [6]. Themethodin [5] usedJacobipolynomialsasthe expansion

basisin theradial directioncloseto thepolaraxisandLegendre-Lagrangianinterpolantsaway

from theaxis,while thelatterusedB-splinespolynomialsexpansions. An adaptationof the

methodproposedin [5] for sphericalcoordinates,whereone is facedwith essentiallythe

sameproblematthetwo singularityaxescorrespondingto polar anglestp=0 and tp=_ can be

found in [7]. Zhang et al. [5] were able to recast the governing system of equations in the

wavenumber space so that the singularities due to coefficients of the form l/r and l/r 2 were

removed. This was essentially done by taking advantage of the particular form of the series

expansions in wavenumber space of the pressure and velocity components. However, they

still had to use a special form of Jacobi polynomials in the radial direction close to the origin

in conjunction with l'Hopital's rule to remove potential singularities arising because of terms

where both the numerator and the denominator tend to zero at approximately the same rate

near the polar axis. Loulou [6] followed a similar approach, but the regularity conditions in

terms of having a certain behavior in r near the origin in the polynomial expansions of the

Fourier modes were imposed as constraints on the coefficients of the B-splines. These

regularity Conditions are essentially the same ones we are going to use in our method, but in

the present work everything is formulated in the physical (r,0,z) space as opposed to

wavenumber space (r,lq,lq). In the spectral methods the essential information is the order of

the leading term in the polynomial expansions in r for each mode of the Fourier expansion in

0. No explicit equations at the polar axis are derived, and there is no need to calculate the

values of the coefficients in these expansions. Finally, a somewhat different approach was

proposed in [8] in the context of pseudo-spectral (interpolatory) methods. Using the

governing differential equations pole conditions were derived in [8] which were subsequently

used as numerical boundary conditions at the coordinate singularity. The advantage of the



methodis that thesepole conditions are developedin physical spaceand are easier to

implementinto astandardpseudo-spectralmethod.The methodwas illustratedfor solvinga

Poissonequationon theunit disk.

Finite-volumeandfinite-differencesmethodsarelessaccuratethanspectralmethods,but

theycanhandlecomplexgeometricalconfigurationsmoreeasily. Finite-volumemethodsfor

flows in cylindricalgeometrieswere employedby Eggelset al. [9], Akselvoll and Moin

[10,11]andBoersmaet al. [12], amongothers.Themaindifficulty hereis relatedto thefact

that the azimuthaland streamwisefluxes are not definedat the centerline. Due to the

definitionof velocitycomponentsat the centerof the volumecells, the singularityfor the

azimuthalandstreamwisefluxes is removed. However, if thecontrol volumeclosestto the

centerlineis notwedgeshaped,the flux at thefirst control-volumesurfaceoff thepolaraxis

whose normal is oriented in the radial direction must be evaluated. In one of the

implementationsof their numericalmethod,Eggelset al. [9] used first- and second-order

one-sideddifferencesto extrapolatetheradialvelocityon theclosestfacesto the centerline.

A similar procedurewas usedto calculatethe diffusive flux at these locations. Loss of

accuracynearr=-0was found not to be very significantdue to the relativesmoothDNS

velocityfieldsin thatregionfor thepipeflow. Theyalsotriedto usewedge-shapedelements

at the centerline,the advantagebeing that the singularityis automaticallyremovedas the

radial flux is identicallyequal to zero on the faces 'located' at the centerline. In this

implementationthe methodwas found to give unrealisticallyhigh valuesfor the r.m.s.

fluctuationsnearthecenterline.However, one shouldpoint out that Boersmaet al. [12],

using a similar method,did not observedsuch problems in their DNS simulationsof

incompressiblejets. Akselvoll andMoin [10] useda finite-volumemethodto solvefor the

turbulentflow in a coaxialjet combustorusing LES. They usedregular-shapedelements

nearthecenterline,with theclosestfaceslocatedat Ar/2 from thesingularityaxis. Provided

thattheradialandazimuthalvelocitycomponentsur andu0arewell definedatthecenterline



for all O's(theyaremulti-valuedatr=0),thecalculationof thefluxeson thesefacespresents

no specialproblem. Theyinterpolatedthevaluesfor the radial velocity at everyazimuthal

location0 on thecenterlineusingthecorrespondingvaluesatAr/2 for two azimuthalangles,

0 and0+_,andaccountingfor thechangein signfor theradialvelocity acrossthecenterline

in the limit r _ 0. A similar treatmentwas followed for the azimuthalvelocity at the

centerlinethatwasneededto computesomeviscousfluxesin themomentumequationfor the

azimuthalfluxes.

Verzicco and Orlandi [13] developed a second-orderfinite-differencesscheme in

cylindricalcoordinates.Themainfeatureof theirmethodwastheintroductionof aradial flux

(rut)on astaggeredgrid. As for finite-volumemethods,this is theonly flux to becalculated

rightat r=0,andits valuethereis obviouslyequalto zero. TheDNS studyin [14] usedthis

algorithmto calculatethe fully turbulentflow in pipeswith rotating walls. Their method

seemstobeveryappealingin thecontextof second-orderschemes,but extensionto higher-

orderschemesis notstraightforward.

Griffin et al. [2] usedfinite differencesand L'Hopital's rule to recastthe governing

equationsat theorigin. For all thetermsinvolving coordinatessingularitiestheycalculated

the radial derivativesusing one-sidedsecond-order-accuratefinite differences,while the

azimuthalderivativesfor the variablesthat are multi-valuedat the origin were formally

evaluatedby usingthevaluesatneighboringazimuthallocationsandA0=2rt/N0,whereNois

thenumberof cellsin theazimuthaldirection. This resultedin a setof new equationsat the

origin thatdonotcontainanysingularities.Formallythis treatmentis notveryrigorousasall

thesevaluesarephysicallylocatedatthesamepoint,but the second-ordermethodwasfound

to producesmoothsolutionsnearthe polar axis at leastin the frameworkof the inviscid

calculationof the I.C. enginethat they considered. However, its use for DNS or LES

simulationsusinghigher-orderschemesis doubtful, andin thenextsectionwe will discuss



in a more rigorous way using series expansionsthe errors introducedby the use of

L'Hopital's rule to remove the singularitiesat the polar axis. This will also answer a

questionwhich theyraisedin their paper,whetheror not a fixed limit exists for terms like

(1/r)0p//)0, which they recasted using l'Hopital's rule into/)2p/0fi)0. We show that in this

case such a limit exits and can be written using Fourier series expansions of the pressure in

terms of the m=l and m=-I modes (the pressure cross-derivative is multi-valued at the

origin). For this particular example the Fourier expansions of 1/rOp/_0 and _2p/_00 give

the same limit, however we also show other examples (e.g., Laplacian operator that is

present in the viscous term) where this kind of approximations using l'Hopital's rule will

lead to a wrong result.

Finally, Mitchell et al. [15], Freund [16] and Boersma and Lele [17] used compact finite

differences on non-staggered meshes in cylindrical coordinates to compute the radiated jet

noise of compressible jets. In these studies, the equations at the polar axis were solved using

a Cartesian coordinate system. The directions of the Cartesian system were arbitrarily

chosen, and the multi-valued variables (u,, u0) for the other directions were obtained by

rotation of the system at r=O where only modes m=l and m=-I may exist. As the present

numerical scheme is very similar to the ones used in these studies, more details can be found

in the validation section. Another option to remove the singularities at the polar axis is to

eliminate the points at r=-0 by distributing the points in the radial direction starting with Ar/2

(for a uniform grid spacing in r) and mapping the domain (0,2n)*(0,R) into (0,n)*(-R,R) -

when radial derivatives must be computed, such as there is no numerical boundary conditions

to be specified at the polar axis. The radial derivative stencils will span the centefline without

evaluation at r=0. This is essentially the method discussed in [1]. We will use this idea but

recast it for the case in which we have points at the polar axis. As we will derive a set of



exact equations which are well defined on the polar axis we will not have to avoid the

presence of such points at the centerline.

2. TREATMENT OF THE EQUATIONS AT THE POLAR AXIS

Let's suppose that the system of governing equations may be written as:

z___._= RHS(Q) (1)
Ot

where, for instance, in the case of compressible three-dimensional flows

Q=(pux,pUr,pu0,p,e), p is the density, e is the energy and the right hand side term (RHS)

contains the usual operators in cylindrical coordinates associated with the continuity or the

transport equations of momentum and energy, including the terms associated with the sub-

grid scale contributions in the case of LES simulations.

The numerical method is general enough so as the particular form of the operators in the

RHS is not really important. The same is true if more equations are included in F_xt. (1), such

as transport equations for passive scalars, or for turbulence quantifies in the case of RANS

calculations. The only important difference between the different equations in Eq. (1) is

determined by whether the variable in the left hand side of Eq. (1) is single valued or multi-

valued at the polar axis. Following Boyd [19], the most general expansion of any function

that is not multi-valued at the polar axis (scalars, pressure, streamwise velocity) can be

written as follows:

F(r,O) = Z(fm(r)-cos(mO)+ gm(r).sin(mO))
m=O

(2)



wherefmandgmarepolynomialsin r thathavem-thorderzeroesatr=-0.If m is even,fmand

gmareboth symmetricaroundr=0 andtheir power seriescontainonly evenpowersof r,

while if m is odd, fmand gmareboth antisymmetricand accordinglytheir power series

containonly oddpowersof r. A similarstatementholdsfor rur andru0which takescareof

theexpansionform for multi-valuedvariablesat theorigin. Theseconditionsimply thatthe

mostgeneralseriesexpansionof asinglevaluedquantity(S) at thepolar axiscanbewritten

as:

S(r,O) = m=0_ rm(kn=0_ (Zrnnr2n)" cos(mO) + Z r m •sin(m0)
m=0

(3)

while the expressions for multi-valued quantities (e.g., u, and %) assume the following form:

( 0 or n) /M(r,O) = -1 _Aonr2 n + m___lrm_1 •cos(mO) + _ r m-I -sin(mO)
r n=l m=l

(4)

A sketch of the proof of Eq. (3) can be given starting with the most general Fourier

expansion of S in the form of Eq. (2) and requiring that all the terms are regular at the origin.

The Fourier expansion in terms of complex variables can be written as:

oo

F(r,0)= X(t'm(r)e im0) (5)
m=O

where t'm(r) is a polynomial in r with complex coefficients. Each term in the summation can

be written as:

10



to to to

t'm(r) eim0 = Y_cn(m) rheim0 = rmeim° _Cn(m)r n-m = w m XCn(m)r n-rn (6)
n=0 n=0 n=0

where w=y+iz=re i°. As w m is regular at origin for all m>0, the requirement that each term

in Eq. (5) is regular implies co(m)=0 for n<m, as l/r _ is not regular at origin for s>0. Also

r s = (y2 + z 2) is regular only for even values of s. For odd values of s the derivative of

r_ with respect to y or z will contain 1/_ which is not analytic at origin.

The form of the series expansions for multi-valued quantities (e.g., for u,) can be

deduced by observing that u r can be written in terms of the Cartesian velocity components Uy

and u z as:

ur=UyCOS(0)+UzSin(0) (7)

where the form of Uy and uz's expansions is given by (3). By regrouping the terms and using

algebraic identities of the form 2cos(0)cos(m0)=cos((m-1)0)+ cos((m+l)0) one can easily

recover Eq. (4).
b

As we previously mentioned any scalar or Cartesian velocity component is uniquely

defined at the origin, so one can write:

r=0

This relation holds in particular for u z = ursin(0)+u0cos(0), so by taking the derivatives

with respect to 0 one can write:

11



)1 /Ik, 00 u° sin(0) + --_ + u r cos(0)
r=0 r=0

(9)

As the Eq. (9) should hold for any 0, one obtains:

Our 0u____R0=
0--0-= u° and 00 -u r at r--0 (10)

There is another important constraint on the general form of the series expansions for u r and

u o. IfA_j r), (r) (0)Bij ,Aij and B_j°) are the coefficients of the series expansions for ur and u o in

Eq. (4), the following relation holds for all i> 1:

A(O)=B_)) and n(O) -AI_ ))i0 _i0 : (11)

This relation can be obtained by using the corresponding series expansions given by Eq. (3)

for Uy and by Eq. (4) for u_ and u o, respectively. These series expansions are plugged into:

uy=u,cos(0)-Uosin (0) (12)

and using algebraic identities similar to the ones employed to deduce the general form of the

series expansions for multi-valued variables at the polar axis (Eq. 4), one can see that the

polynomial multiplying cos(20) in the RHS of Eq. (12) has the form:

12



1/B(O) +AI '+ (13)

As this polynomial should have a double zero at the origin, one should require B (°) -_0 -Alo )-

The other relations in Eq. (11) follow similarly from analysis of the form of polynomials

multiplying the other modes in the RHS of Eq. (12).

By calculating the derivatives with respect to 0 and r of the series expansions given by

Eqs. (3) and (4) for all operators present in the RHS of the governing equations Eq. (1) and

taking the limit r --> 0 a new form of the governing equations that is valid at r=0 is obtained.

These are a set of exact equations at the polar axis, provided that we can calculate exactly the

coefficients A m, Bm_, o_m, _m for all terms present in the RHS of Eq. (1). However, for a

system of PDE's with second-order radial derivatives, as is the case for the Navier-Stokes

equations, it is sufficient to calculate at most the coefficients whose indices m and n vary

between 0 and 2, as we show next. The final expressions in the RHS of Eq. (1) are

dependent on the particular set of equations that is solved (inviscid, laminar, turbulent,

compressible, incompressible, etc.). However, the present method is valid for any system of

equations that can be written in cylindrical (or spherical) coordinates in the form of Eq. (1).

Hence, reference is made to the Appendix for the final expression of the RHS corresponding

to the compressible turbulent flow equations that were used in the present flow calculations to

validate this method. In the following discussion we will focus our attention on pointing out

some general features.

At this point it is relevant to look at the expressions for the series expansions of a single-

valued variable at the origin, let's say the streamwise velocity ux (coefficients in series

expansions are labeled ct(_ and _(n_), and for a multi-valued one, the radial velocity u r

(coefficients are A(_ andB(r_), as well as their first and second radial derivatives, in the

limit r--->O:

13



U x = _(0_ )

/)u---_x= ct_ ) cos(0) + I_[_) sin(0)
Or

 2Ux 2a ) + cos(CO)+,.,,2o
Or2 = ,re(x) sin(20)

Ur = A_) cos(0) + B_) sin(0)

0u-----r-r= A(0rl) + A(2_ cos(20) + B_0) sin(20)
Or

t)2U r

/)1.2 = 2A_ ) cos(0) + 2B_ ) sin(0) + 2A_ cos(30) + 2B(ar0) sin(a0)

(14)

(15)

(16)

(17)

(18)

(19)

As expected the series expansions of scalar quantifies (e.g., Ux) contain only the m=0 mode,

while those of u r and u o contain only the m=l (cos(0)) and m=-I (sin(0)) modes.

Meanwhile, the first derivative of a scalar quantity is multivalued as it contains the m=l and

-1 modes, while the second derivative contains the m=0, 2 and -2 modes. In particular, this

applies to the pressure, p, which is a single-valued scalar, but 0p/or is multi-valued at r=0.

If we go back to Eq. (1) for the ux variable, and take the limit as r ---) 0, we obtain:

/)ux = 0ct_ )

0t /)t
--- RHSu. (20)

where RHSu, contains terms coming from the convective and viscous, operators that would

obviously involve modes m=0,1,-1,2,-2,3 and -3 (see Appendix). In order for Eq. (20) to

be valid, the coefficients resulting from the series expansions of the different variables and

their derivatives should be such that the coefficients multiplying all but the m=0 mode in

RHSu, must be equal to zero. Indeed this is what happens when we sum the contributions

14



comingfrom all the terms contained in RHSu, and use Eq. (11). However, individual terms

may contain non-zero coefficients multiplying the m ;_0 modes. In fact, in can be proven that

this property holds not only for the RHS of the equations describing the transport of a single-

valued variable at the polar axis as a whole, but also for independent operators such as

convective, viscous, dilatation, viscous dissipation in the energy equation, etc. For instance,

the dilatation operator, which is a scalar quantity and thus should contain only the m=0

mode, can be expressed as:

C)Ux _L1 r 1 / OU--_/ C)_))+ + Ur OXax --g- + - -- + 2A(orl) (21)

where the streamwise derivative can be calculated with exactly the same method used (6 th

order compact differences in the present work) for points situated away from the polar axis.

Same observation is true for the continuity equation, recasted as an evolution equation for the

density:

09_ ( OOUx lOrpu r
8t _, 8x. + r 8r 100Uo'] = --(O(_(PO_)(_(_O) "A(r)"(P)'10'-"10 "-'101_(r)R(P)I-'10+ "*gA(r)"(P))'01_00r 00) _, _xx + +

(22)

In Eq. (22) the series coefficients for the density P are ct(P) ...4 .(o)-nan °"'upton- Another example is the

Laplacian operator (e.g., the viscous term in the Ux-momentum equation, or more exactly the

term corresponding to the constant viscosity part):

O2U x 02Ux 1 0%

Ox2 + +r-g-r +
1 a2Ux _ O20t_ )

r 2 202 0X 2
+ 4(x(0]) (23)

15



For theu, andu0-momentumequationstheRHS will contain0nly the m=-I and m=l

modes, once contributions from all the terms are added. These two equations are identical in

the limit r -4 0, thus it is sufficient to calculate the limit for only one of the equations, e.g.:

3u__r_r : 0A_ ) cos(0)+ B_l ) sin(0)

0t /it
= RHSu, = RHS m=l cos(0) + RHS m=-I sin(0)

(24)

In fact, we will end up with two scalar equations corresponding to the m=l and -1 modes,

respectively as one can see from the previous relation, the reason being that as r -4 0, U, can

be obtained from u 0 by a counterclockwise rotation of rt/2. This means that if the radial

component at the polar axis is given by Eq. (17), the azimuthal component can be written as:

^(o) cos(O) + n(o) sin(O) = -AI_ ) sin(O) + B_ ) cos(O)U0 = "7'10 _'10 (25)

where use was made of relation (11). Relation (23) can also be used to show an inherent

problem with methods in which l'Hopital's rule is applied numerically to remove singularities

at the polar axis (e:g., [2]). In these methods the Laplacian will be calculated at thepolar axis

by numerically evaluating the following expression:

_)2U x _)2U x 32Ux
a.2f

32Ux
Y.C_.| l 4Ct_) -- 4CtC2_)cos(0)- 4_) sin(0)+ j:

(26)

which introduces a finite error, as the coefficients of the m=2 and m=-2 modes are now

present.

The last step needed to complete the presentation of the present method is to describe

how the asymptotic series coefficients that are needed to evaluate the RHS in Eq. (1) are

16



computed.Wewill showthatall that is required to calculate these coefficients accurately is to

be able to estimate numerically the first and second order radial derivatives of all the variables

in RHS with the same order of accuracy as at points away from the polar axis. In particular,

in our compressible flow solver we are using 6 th order Pade schemes to calculate the radial

derivatives. To do this, the following algorithm, similar to the one used in [1] is adopted.

The computational domain is mapped at every x=constant, such as there is no need to specify

numerical boundary conditions at r=0. The mapping function (r,0)--> (?,0) is:

for[6=0 0<r<R 0-It 0<r<R
(27)

All variables are identical in both systems of coordinates for 0<0<re. The rules concerning

the sign changes for the different variables and operators in the subdomain defined by 0<r<R

and _r<0<2rr follow from Eq. (27):

df dr
Up =--=m--'---Ur,

d'r d'r

_d6 rd0
u 6 = _ - - -u 0, (28)dt'c dtx

0 0 0 0

0-_ = Or' 06 = _ and ] = s for any scalar variable s

As all the signs of scalar quantities and streamwise velocities are left unchanged by the

mapping, Eq. (28) is sufficient to determine the sign of all the terms involving radial

derivatives in the RHS of Eq. (1) in the mapped domain. The radial derivatives are now

taken from -R to R with r=0 being a regular interior point instead of a 'numerical' boundary

17



point. For example,beforetaking the radial derivativeof (rpu0u,),which appearsin u0

momentum equation, one has to multiply the values for 0=(rc,2r0 by-1, because of the three

changes of sign (for r, u o and u,) required by the mapping. One should point out that even if

a scalar quantity is single valued at origin, its radial derivative is not. Once the radial

derivatives are calculated, the inverse transformation of Eq. (28) is taken such as the

azimuthal and streamwise derivatives are estimated with the usual coordinate definition

(0,R)*(0,2rt).

Next, we will expand on the calculation of the required coefficients in the asymptotic

expansions for u,, and its radial derivatives. All other variables are treated in a similar

fashion using the appropriate series expansions. Suppose that N0+l is the number of points

in the azimuthal direction (with modes 0; 4- 1, +2 .... , + N0/2). According to Eq. (17), only

the m=l and -1 modes should be present in a series formed by these N o values. We will

formally associate the N o values with 0 going from 0 (N o =1) to 27t (N0+l). A Fast Fourier

Transform can, in principle, be applied and the coefficients of the m= + 1 modes will be A_ )

and B_ ), the other coefficients should be very small. This can also be done for the first and

second radial derivatives using their asymptotic expansions in Eqs. (18) and (19) to find

A(r) A(r),B(2r0 ) and A_),B_ ) A(r)01 ," "20 ,"30 ,B_, respectively. Once these coefficients are calculated

the limitS of terms involving azimuthal and cross derivatives are also known using Eq. (4)

and (11), while streamwise derivatives of these coefficients are evaluated with the same

scheme used for interior points. However, there is a more economical way to calculate these

coefficients. Supposing that N o is divisible by 8, meaning that for every element in the series

there is another situated exactly rt/4 away, one can take advantage of the properties of sin(0)
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andcos(0) functionsto evaluatethecoefficientsin Eqs. (17), (18) and (19). For instance,

using Eq. (17) for 0 and 0+re/2 a system of two linear equations with two unknowns (AID)

and B_ )) is obtained:

Ur(0 ) = A_) ) cos(0)+ BID ) sin(0)

Ur(0 + 71;/2) : -A_ ) sin(0) + B_[_) cos(0)

(29)

To eliminate the bias toward a certain direction, one can s.olve the above system for every

0=(2rr/No) (n-I) with n=l to N Oand average the results to get final values for A_[_) and BI[)).

Same kind of treatment can be applied to determinate A(0rl) ^(r)_(r) by first getting the, ¢-x20, x-'20

coefficient A(0rl) and then using Eq. (18) for 0 and 0+n/4 to calculate the remaining two

coefficients. The coefficients involved in the expression for the second derivative of ur can

be determined more easily if we try to obtain at the same time the coefficients appearing in the

expression for the second derivative of u0:

02u° - 2A_ °) cos(0)+ 2B_ °) sin(0)+ 2B(3_ cos(30)- 9A(r)
_I.2 .... 30 sin(30)

(30)

where use was made of Eq. (11). By writing Eqs. (19) and (30) at 0,0+rt/2,0+rt/4,0+3n/4

and solving three systems of two linear equations, one can determinate the values of all

coefficients similarly to the procedure employed above.
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3, VALIDATION OF PROPOSED NUMERICAL ALGORITHM

The development of this new technique was driven by the interest of the authors in

calculating the turbulence dynamics and acoustic radiation of turbulent compressible round

jets using LES. This problem is especially relevant to the design of more effective jet

engines with reduced noise emissions. The quality of the jet-noise predictions is determined

by the accuracy (resolution) of the numerical method, and by the boundary condition

(physical as well as numerical at the polar axis) treatment and the quality of the mesh. The

general numerical method is described in details in [18], while the details of the

implementation of the dynamic LES model in the original DNS code can be found in [17].

The numerical method employs compact six-order Pade schemes [20] for the spatial

derivatives in the non-homogeneous directions, and Fourier spectral methods in the

homogeneous (azimuthal) direction. The number of modes is dropped near the polar axis so

that the CFL constraint will be determined by the radial (or axial) spacing. No clustering of

the points near r=-0 is needed. The solution is advanced in time using a four-step Runge-

Kutta method. Zonal boundary conditions with artificial damping are employed near the inlet

and outlet to absorb outgoing disturbances and to avoid spurious noise generation at these

boundaries. Non-reflecting boundary conditions are used at the lateral boundary r=R

(=11R0), as well as. damping terms in a layer close to this boundary. The Reynolds number

is Re=U(2Ro)/v=36,000 and the Mach number Ma=U/coo=0.9, where R 0 is the initial radius

of the jet in the inlet section. In all the calculations discussed here the computational grid

consists Of 192"128"64 points in the (x,r,0) directions, which is about an order of

magnitude coarser than the grid used by Freund [16] to calculate a similar jet at Re-3,600

using DNS. The time step is At=O.01R0/U, corresponding approximately to CFL=I. The

mean flow distribution at the inlet plane is assumed to be a rounded top-hat profile with

periodic disturbances in the streamwise direction.
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In afirst testcaseno randomizedforcingis appliedandtheLES modelis turnedoff. A

sinusoidal perturbation at a Strouhal number St=0.5, corresponding to the most amplified

wave, is imposed on the streamwise velocity profile. The forced-jet solution is quasi-

axisymmetrical and laminar as seen from the total vorticity contours in Fig. 1a. The effects of

the different treatments at the polar axis are investigated in Fig. 2, where snapshots of the

dilatation fields in the region x>20R o are shown for different treatments atthe polar axis. We

choose the dilatation because this quantity is very sensitive to the centefline treatment and

also provides relevant information for the jet acoustics in the near field. Case L1

corresponds to the method where the equations are solved in Cartesian coordinates, case L2

corresponds to a grid with no points placed at the polar axis (method described in [ 1]), while

case L3 correspondsto the treatment using series expansions at the centerline. In the second

test case randomized azimuthal forcing is applied in the input plane to trigger the three-

dimensional instabilities for the LES calculation. All other parameters of the Simulations, as

well as the computational mesh are kept the same as those used in the first test case. As seen

in Fig. lb the jet undergoes transition to turbulence at the end of the potential core situated

around x=15R 0. Results are shown in Fig. 3 for two simulations, the first (T1) uses the

method of Mohseni and Colonius [1], while in the second (T2) the series expansion

treatment is employed.

Considerable success was reported by Freund [16] for DNS simulations of jets al lower

Reynolds numbers using the present numerical method with the equations at the centerline

solved in Cartesian coordinates. As we are interested in simulating jets at very high

Reynolds numbers (2 to 3 orders of magnitude higher than the ones at which DNS is

presently possible) the robustness of the method on coarser meshes is an obvious

requirement. Our simulation showed that even for a laminar forced jet (case L1) strong

oscillations in the dilatation field developed near the centerline in the form of two-delta

waves. They are evident in Fig. 2a in the region near the polar axis starting with the

streamwise (x-15R0) location where ring vortices begin to be shed from the jet. These point-
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to pointoscillationsin dilatationareof theorderof 1.5Ro/U,which is morethanoneorder of

magnitudehigherthatthevaluesof 0.1R0/Uassociatedwith the maximumdilatationinside

thecoherentstructuresof thejet. Theseproblemswere alsoapparentin thevorticity fields

nearthecenterline.ForcaseL1 thesimulationdid not diverge,but obviouslythequality of

thesolution,especiallythesoundinformationthatcanbecollectedfrom thesefields is poor.

Whenusedtocalculateaturbulentjet wewerenot ableto get a well-behavedsolutionon the

relativelycoarsemeshusedin thesesimulationswithoutsubstantialfiltering of thesolution to

removethetwo-deltawaves(everycoupleof timesteps),andthequality of thesolutionwas

poor. This shows that therobustnessof this polar axis treatmentdeterioratesrapidly on

coarsemeshesand for high Reynoldsnumbers,when strong non-linear interactionsare

presentin theflow. Severalfeaturesof this methodaresuspectedto be at theorigin of the

abovementionedproblems. First, the derivativesin the directionscorrespondingto the

Cartesiancoordinatesareevaluatedusingsix-orderexplicitcentral-differencesinsteadof 6th

orderPadeschemes,while in theevaluationof theradialderivativeswith compactdifferences

numericalboundary conditionsusing one-sideddifferencesof lower order have to be

formulated. Another sourceof errorsmaybe associatedwith the bias introducedin the

solutionby the arbitrarychoice(N0/2possibilities)of thetwo perpendiculardirectionsafter

whichtheflow equationsaresolvedatthecentedine.

Both of theseapproximationsareautomaticallyremovedwhena staggeredmeshin the

radial directionis employedin simulationL2. However, our resultsusing the technique

proposedin [1] showed that in the absence of filtering the solution would diverge after

approximately 1000 time steps. That was due to a very local instability situated at the first

point off the polar axis at a certain streamwise location. The dilatation field remained fairly

smooth at all other streamwise locations close to the polar axis in contrast to the results seen

in case L1. However, when a 6 th order accurate filter was applied every 300 time steps to

smooth the velocity field, the dilatation contours shown in Fig. 2b remained smooth and no

unphysical oscillations were observed near the polar axis. The behavior of the solution in
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this first test case seems to suggest that this method is not very robust for strong non-linear

problems, which would limit their use for turbulent calculations, especially on fairly coarse

grids.

Finally, in case L3 where the new treatment using asymptotic series expansion was used

at the polar axis, the dilatation fields are smooth (Fig. 3c) and the flow features are very

similar to the results obtained with the method of Mohseni and Colonius, but no filtering was

necessary to avoid numerical instabilities to form near the polar axis.

Based on the results from the first test case, we focus our attention for turbulent

calculations on the method proposed by Mohseni and Colonius [1] and the method based on

series expansions. Filtering the solution every 30 time steps despite being sufficient in

keeping the solution from diverging, does not remove the unphysical spurious oscillations in

the dilatation field that are observed very close to the polar axis at all streamwise locations for

x>15R 0 (Fig. 3a). In fact the maximum values of the dilatation in these elongated structures

very close to the polar axis are around 1.2R0/U, which is significantly higher than the levels

of dilatation recorded in the rest of the computational domain. That is true even if the filter is

applied more often. One should point out that this amount of filtering was found to have

non-negligible effects if sound sources were calculated from these fields. Thus, even though

the method proposed in [1] gives comparable results with the series-expansions based

technique for laminar forced jets, in turbulent simulations, the robustness and accuracy of the

method in [1] appears to be inferior. The turbulent case is much more difficult to be handled

because the level of non-linear flow interactions is much higher and jet structures are passing

through the centerline. Convergence of the solution on relatively coarse meshes can be

obtained in our simulations only by filtering the solution when the method of Mohseni and

Colonius [1] is used.

In simulation T2, patches of high dilatation are observed in a region of about 10R o in the
r

streamwise direction starting at the end of the inviscid core. The position of these patches is

not very close to the polar axis (Fig. 3b), except times when they are convected by the mean
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jet motionthroughthepolaraxis. The maximumabsolutevalueof the dilatationfield in the

turbulentregionis atall timesaround0.2R0/U,includingat thepolaraxis. Theshortwaves

that areseenat the top of Fig. 3b areratherrelatedto the high aspectratio Ax/Ar of the

presentgrid, andarenot a consequenceof centerlineinstabilities. Away from thecenterline

thedilatationfield appearssmootherin caseT1 comparedto T2, but this is just aneffectdue

to theuseof thefiltering in T1. Evenso,spuriouswavesor unrealisticallyhighvaluesof the

dilatation(Fig. 3a - caseT1) or vorticity at the first 2-3 points off the centerlineare not

observed.

Thelevelof theunphysicalspuriousdilatationoscillationspresentin the domaincloseto

thepolar axis is greatlyreducedcomparedto thecasein which themethodof Mohseniand

Colonius[1] wasused,while filtering waspracticallyeliminated. The 6t_order filter was

appliedevery500timestepsto eliminatethehigh-frequencywavesthatform becauseof the

high grid-stretchingratio. Overallthereis a significantincreasein the robustnessfor the

method using asymptotic series expansionscomparedto the other two approaches.

Moreover,becauseweareprimarily interestedin extractingsoundinformationfrom thenear

fields,eliminationof filteringthatmaycompromisesubstantiallythequalityof thesounddata

is akeyfactorin assessingthedifferentmethods.

4. SUMMARY

In this paper a general method for handling the singularities arising atthe polar axis of

the governing flow equations in cylindrical coordinates based on power series expansions in

the radial direction and Fourier series in the azimuthal direction was presented. Using the

most general form of these series expansions a new set of equations at the polar axis was

derived by calculating the limit of the various operators appearing in the governing system of

equations (Eq. 1). The new method is computationally easy to implement and is less

expensive than solving the equations in Cartesian coordinates at the centerline. The method
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wasprovento bewell-definedin thesensethatfor anysingle-valuedvariableatthepolar axis

(scalarquantityor streamwisevelocity)in theRHS of theNavier-Stokesequationsonly the

m=0modewasshownto haveanon-zerocoefficientin thelimit of r---_0,despitethe fact that

individualtermshadnon-zerocoefficientsfor modes+2 and +3. The momentum equations

for u r and u 0 are coupled in the limit r---_0, and only modes m=+ 1 are left in the RHS of the

two momentum equations. Again this is consistent with the asymptotic behavior of the radial

and azimuthal velocities at the origin (Ur(0 + x/2) = u0(0)).

The present algorithm avoids the loss in accuracy at the centerline where most of the

finite-volume and finite-differences methods use some kind of one-sided differences to

approximate the operators at the centerline. This is because in the context of the present

method we were able to calculate the radial derivatives at the origin with the same order of

accuracy as in the rest of the domain (6 _ order compact differences) by using a domain

mapping such as the points on the polar axis become regular interior points. As this is the

only information needed to calculate the coefficients of the newly derived polar equations,

there is no loss in the overall accuracy of the method. The coefficients in the asymptotic

expansions are unique so we do not have to choose any arbitrary directions as is the case

when the equations are solved in Cartesian coordinates at origin. One of the advantages is

that the first point off the axis where the various terms with singular behavior have to be

evaluated will be situated at Ar as opposed to Ar/2 (as is the case in the method of Mohseni

and Colonius [1]), which may avoid an important source of errors or instabilities (e.g., due

to the nonlinear interactions of eddies near the polar axis in a DNS or LES simulation).

The robustness of the proposed approach was tested successfully by comparing results

for a deterministically forced jet with similar calculations using same numerical method but

with the equations solved at the centerline in Cartesian coordinates, or without any points at

r=-0 using the method described in [1]. Finally, the present technique was shown to give

improved results compared to the method of Mohseni and Colonius [1 ] for the simulation of
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a compressiblejet using LES on relativelycoarsemeshes,in which the flow interactions

takingplacenearthe polar axis arevery important,and where a flow solution that is not

contaminatedby numericalartifactsoriginatingatthesingularityaxisis requiredto accurately

calculatethejet noisesources.

One should point out that the algorithmpresentedhere to deal with the polar-axis

singularitiesis not restrictedto theuseof thepresentnumericalmethod, thatusessixth-order

Padeschemesto evaluatethederivativesin theradialandstreamwisedirections,or to solving

thecompressibleflow equations.Ratherit canbeadaptedin astraightforwardway to handle

the systemof equationsgoverningmagneto-hydrodynamics,combustion,etc. As spherical

coordinatesare locally cylindrical coordinatesnear the two singularity axes, the above

methodis applicableto numericalmethodsthat solve the flow equationsin spherical

coordinates.In this casethegoverningequationsaredifferentbut thederivation of thesetof

equationsValidatthetwo singularityaxesis similar.
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APPENDIX

The mass conservation, momentum and equations for the compressible flow equations

in cylindrical coordinates are:

_913 4 _)pux 1 _I'PUr 10qPUo-_
kax +- +-= r Orr r oaOJ

(A1)

/)PUx = (0PUxUx

0t _, /)x

1 0rpuxu r
+

r Or.
10PUxU O_ Op

+7 ao -+vx (A2)
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 ou,_r ou,ux' r0UrUr' 0U,U00t _ 0x +r Or -_r_00 - - + Vr

0PU 0 = (0pUoU x 1 OrPU0U r 1 0OU0U o PUrU0" ] 1 0p
_, _ +- +- + _r _rr r _ r ) r00

+ vo (A3)

_e = _(O(e + p)u x +
at _, Ox

1 or(e + p)u r 4 1 0(e + p)u o
r Or r 00

The irreversible viscous dissipation, W, is given by:

)+Y e +UxY x +urY r +u0Y 0 q-_I /

(A4)

_U x OU r 0U 0 -_ Our_=_xx Ox +_xr-_x +_x0--_X+_xr +_rr--_r +

0U 0 'lTx0 0U x "lTr0 OUr

'lT0r_ + - +r 00 r 00
+ "17000U 0 Ur'lT00 U0'lTr0-+

r 00 r r
(A5)

The viscous terms appearing in the momentum equations are:

b'_xx 1 0rTxr 1 OXxO
Vx=a--_+-_ +-_r Or r c)O

OXxr 1 Orx_ 1 bX_o Xoo
Vr= a--_+-_+r or. r O0 r

0XxO 1 0r'lTor 1 0_oo "CrO
v°- Ox +-_+-_+_r or r _0 r

(A6)

(A7)

while the viscous flux term in the energy equation is:

Ve = _xx_,Prr_xJ + r_ r-- +Pr rO-Okr Pr
(A8)
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In Eq. (A8) T is the temperature, Pr is the Prandtl number and IX= Ix(T) is the shear

viscosity. The viscous stresses in cylindrical coordinates are:

_( 0Ux O)"rxx = 2--_x +A

_xr = +

= u(Ou0 1 _u__)XxO '_, Ox +-r

=dOuo lOUr Uo)"r_° 'k, Or +-r3--O

/"(10u0 .-_) O)

(A9)

The coefficient A in (A9) is defined as:

A_Ix B 2
(A10)

where IXB is the bulk viscosity (IXB/_t =0.6 for air according to [21]. The dilatation of the

velocity field, O, is given by:

O 0Ux OUr _I 0u0_=_+_+ U r +
Ox Or OO J

(All)

31



In thefollowing theseriesexpansionscoefficientsintroducedinEq. (3) for ascalarvariables

arectljs),13_)(forux,s=x, for pu_,s=px), while thoseintroducedin Eq. (4) for multi-valued

variables(Ur,U0) are A_js),B(s)ij with s=r and s=0. The derivative of the viscosity Ix(T) is

calculated as:

a__E_aIx aT _rr
= - rl(T) -- (A14)

¢)X i aT _)x i ax i

If the appropriate series expansions are introduced in Eqs. (A1) through (A8) and (All) and

the limit r--->0 is taken, a new set of equations valid at the polar axis is obtained.

A(r)r"(O) l_(r)IR(P) "'_01 '_'00 J
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OlDU r _{" _' "v(p)rv(x)A(r)

_ " v'00 "00 ""10

N ax
\

t,- x j+v 

032)

_)_(O),.,(x)r_(r)

"_00 "00"10 sin(0) + (AI_) cos(0)+ B_ ) sin(0))*cos(O)+ Ox

(,_(p)a(r) + p,(p)_(r) ct_) [3A(or]) * (AI_)) Cos(0) + B_)) sin(0))-"-"10 • "10 _10 "10 ) +

_ _' A (r)A(r) + l_(r)l_ (r)"'ola(0)*(Bl_))c°s(0) A_o)sin(0))+c°s(0)*,"lo"20 _10_'20) +

sin(0), cA(r)l_(r)- l_(r)A (r)_]_-/r,(P) cos(0)+13_P)sin(0))+ Vr 033)_' no"20 _'1o •'2o q] WIo

A (r)rv(e+p) + _(r)fl(e+p) + ,)^(r)rv(e+p) I + We + O_))V x+ " *lO '_'lO _10 I°lO _z-*O1 '-"00 +

)

32



o °'''>II
.A.t,._(T)A(r) .(T).(r), _tA/V-lO c)_]_)) BI +
'l_''_'_'10--10-)'1_10_"10''I- (. C)X A_)> 4- _)-----_--

"'">'^_>+OB_?-:>)Bl_)>]+--,o ,-,,

_t[(Si_>__(0>,a(r> ^(0)._.(r>] 9. A(r>/.(T)a(r > o(T>.(r>,-11 :"1o + (SB_)+'_11 :'10 J +'--"01 ''Io "'1o +PlO _'10 ,+

2.,fr,_(T>_(,) a(T)_(,>,_(r> ._(T)_(O a(T>^(,)_))]q[_'_10 "_20 + I-'10 _'20 ]"10 + (t'¢10 1")20-- J-'10 "_20)B + W

(B4)

tp = _"v'oo (2
Ox Ox

a,,tA(r)a(r) a(r)a(r) n(r)l_(r)_+ AO) + 2_tAOA(o r] + _.t, .Ol, _Ol + ,.2o._2o + _,2o_,20 j +

L ox Ox Ox Ox o_ 0BI_)) ,.,(x),_(x) vlo vl0J
_+ 213_))----_x + "10 '_10 + a(x)_t(x)]

Vx= 2_+A® + 4cc_)+ ax )+

(,.,(T> 0A'_) ) .(T>__0B'_) +._(T>,.Ax> .(T>.(.>)_" "1o 0---_+ _'1o 0x '-'1o"-'_o+ _'_o_'_o

(SS)

(B6)

_x( "[ oA'_)) c_'_)))l + sin(0) _x ().t •(0B'_)) ))v, =cos(O) _'/ a, + _ +_>> .+

,qR(x)

Oa(×) _xO sin(0)) +nAO(a_ T>cos(O) + _i T> sin(O))+ _tA(--_-x° cos(O) +

).tA[(Bi °) + 3A_))cos(0)+ (3BI_)- ..,,a'°))sin(0)] +

33
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In deducing the final form of Eqs. (B 1) through (B8) repeated use was made of Eq. (11).

Eqs. (B3) and (B7) were obtained by using the expressions for the radial momentum

equations and its viscous term (the first equation in (A3) and (A7)). As we pointed out in the

paper the expressions obtained using the azimuthal momentum equation and its

corresponding viscous term (the second equation in (A3) and (A7)) are redundant in the

sense that the two independent equations corresponding to the m=l and m=-I modes will be

exactly the same as the ones deduced using only the expressions of the radial momentum

equation and its viscous term. Nevertheless, if this method will be applied to another system

of equations, doing the calculations for both the radial and azimuthal directions may serve as

a check of the calculation. For the LES simulations there are additional terms arising from

the sub-grid scale modeling. For instance, the new term in the energy equation is:

0(O___x ) 1 0(or0T_ l_0 (lff_)Vscs= +rTrr , -bTr;+r Or (A15)
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where O = pv t ] Pr t , v t is the eddy viscosity and Pr t is the turbulent Prandtl number. As O

is a function of space that cannot be related directly to the temperature as was la, series

expansions should be used for this coefficient when the limit is taken in Eq. (A15). The final

form will be:

Vsos= Ox

!

Arv(O),.v(T) f,-v(O),-v(T) + R(O)IR(T)_+ -"_0o "_01 + _'_1o '_1o _qo _'1o J (B 15)

Note that O is evaluated directly in physical space using Lilly's contraction in the present

implementation of the dynamical model (as opposed of calculating first Prt), and its series

expansion is calculated in the same way as for the eddy viscosity v,.
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FIGURES

Fig. 1 Total vorticity contours. Vorticity shown using 18 equally spaced contours between

0 and 2U/R o. (a) Laminar forced jet; (b) Turbulent jet

Fig. 2 Dilatation contours in the forced jet. (a) Cartesian Coordinates; (b) Method of

Mohseni and Colonius; (c) Series expansions treatment

Fig. 3 Dilatation contours in an area situated after the end of the potential core for the

turbulent jet. Dilatation fields are shown with 18 equally spaced contours between

-0.08U/R 0 and 0.08U/R 0. (a) Method of Mohseni and Colonius; (b) Series expansions

treatment
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